140 research outputs found

    Informative sequence-based models for fragment distributions in ChIP-seq, RNA-seq and ChIP-chip data

    Get PDF
    Many high throughput sequencing protocols for RNA and DNA require that the polynucleic acid is fragmented so that the identity of a limited number of nucleic acids of one or both of the ends of the fragments can be determined by sequencing. The nucleic acid sequence allows the fragment to be located within the genome, and the fragment distribution can then be used for a variety of different purposes. In the case of DNA this includes identifying the locations where specific proteins are bound to the genome. In the case of RNA this includes quantifying the expression levels of different gene variants or transcripts. If the locations of the polynucleic acid fragments are partly determined by the underlying nucleic acid sequence this could bias any results derived from the data. Unfortunately, such sequence dependencies have already been observed in the distribution of both RNA and DNA fragments. Previous analyses of such data in order to reduce the bias have examined the role of regional characteristics such as GC bias, or the bias towards a specific sequence at the start of the fragments. This thesis introduces a new method for modelling the bias which considers the degree to which the nucleotide sequence affects the likelihood of a fragment originating at that location. This shows that there is often not a single bias characteristic, but multiple, alternative sequence biases that coexist within a single dataset. This also shows that the nucleotide sequence immediately proximal to the fragment also has a significant effect on the fragment likelihood. This new approach highlights characteristics that were previously hidden and provides a more powerful basis for correcting such bias. Multiple alternative sequence biases are observed when both RNA and DNA are fragmented, but the more detailed information provided by the new technique shows in detail how the characteristics are different for RNA and DNA and indicates that very different molecular mechanisms are responsible for the biases in the two processes. This thesis also shows how removing the effect of this bias in ChIP-seq experiments can reveal more subtle features of the distribution of the fragments. This can provide information on the nature of the binding between proteins and the DNA with per-nucleotide precision, revealed through the change in likelihood of the DNA fragmenting at each position in the binding site. It is also shown how the model fitting technique developed to analyse sequence bias can also be used to obtain additional information from the results of ChIP-chip experiments. The approach is used to find the nucleotide sequence preference of DNA binding proteins, and also the cooperative effects associated with binding at multiple binding sites in close proximity

    ‘How Does it Feel?’: Masculinity, Transformation and Structures of Feeling in British Television in the 1970s and 1980s

    Get PDF
    This thesis examines representations of masculinity in British television of the 1970s and 1980s which reveal a structure of feeling around masculine discourses of the period. It questions the ease of transformative change in gender identities and gender relations in terms of masculine performance by stressing both limitations and resistance to change against the backdrop of social, cultural and economic shifts which took place in Britain in the 1970s and 1980s. While the Introduction sets out the key questions and problems which this thesis addresses together with the historical context, Chapter Two consists of a Literature Review of some of the most important extant literature concerned with the representations of masculinity on screen. Chapter Three establishes the methodological framework which underpins this investigation which incorporates both textual analysis, particularly through the application of Raymond Williams’s concept of structures of feeling, and gender theory. The thesis then goes on to deconstruct the work of a number of television writers who foregrounded a structure of feeling around male anxieties examining the interrelation between residual, dominant and emergent discourses of gender within their work. In the first of a series of case studies, Chapter Four examines the work of Peter McDougall arguing that the social structures which underpin his protagonists’ milieu are so potent and insidious that they render masculine transformation as highly problematic. Chapter Five places Trevor Preston’s Fox and Alan Bleasdale’s Boys From the Blackstuff as the obverse of each other as responses to social change. The former shows how patriarchy and hegemonic masculinity remains in place by absorbing emergent discourses into adapted configurations of gender practice, the latter reveals the increasing marginalisation of traditional masculinities whilst largely ignoring gender inequity. Chapter Six examines Clement and La Frenais’ Auf Wiedersehen, Pet where more fluid, open, fragile, and multiple masculine identities emerge as a consequence of a variety of discursive practices and inter-subjectivity. Yet in the face of change the narratives stress the importance of nostalgic homosociality as a way of reaffirming residual identities. In conclusion this thesis suggests a model of gender which, whilst undergoing a considerable degree of destabilisation which may facilitate certain changes in normative behaviour, may also be so deeply entrenched within the individual and collective unconscious as to render certain aspects of reflexive transformation problematic

    Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism

    Get PDF
    Polycistronic transcripts are considered rare in the human genome. Initiation of translation of internal ORFs of eukaryotic genes has been shown to use either leaky scanning or highly structured IRES regions to access initiation codons. Studies on mammalian viruses identified a mechanism of coupled translation termination-reinitiation that allows translation of an additional ORF. Here, the ribosome terminating translation of ORF-1 translocates upstream to reinitiate translation of ORF-2. We have devised an algorithm to identify mRNAs in the human transcriptome in which the major ORF-1 overlaps a second ORF capable of encoding a product of at least 50 aa in length. This identified 4368 transcripts representing 2214 genes. We investigated 24 transcripts, 22 of which were shown to express a protein from ORF-2 highlighting that 3' UTRs contain protein-coding potential more frequently than previously suspected. Five transcripts accessed ORF-2 using a process of coupled translation termination-reinitiation. Analysis of one transcript, encoding the CASQ2 protein, showed that the mechanism by which the coupling process of the cellular mRNAs was achieved was novel. This process was not directed by the mRNA sequence but required an aspartate-rich repeat region at the carboxyl terminus of the terminating ORF-1 protein. Introduction of wobble mutations for the aspartate codon had no effect, whereas replacing aspartate for glutamate repeats eliminated translational coupling. This is the first description of a coordinated expression of two proteins from cellular mRNAs using a coupled translation termination-reinitiation process and is the first example of such a process being determined at the amino acid level

    Variable structure motifs for transcription factor binding sites.

    Get PDF
    BACKGROUND: Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. RESULTS: We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. CONCLUSIONS: We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Success after failure : the role of endometrial stem cells in recurrent miscarriage

    Get PDF
    Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure prior to conception

    Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

    Get PDF
    Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research

    Analysis of chromatin accessibility in decidualizing human endometrial stromal cells

    Get PDF
    Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to menstruating species, including humans and other higher primates. During this process, endometrial stromal cells (EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferentiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression. Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched motif-basic leucine zipper-as part of a triple motif that also comprised the estrogen receptor and Pax domain binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally under-represented in open chromatin of undifferentiated EnSCs, several classes contributed to the regulatory DNA landscape that underpins decidual gene expression

    Effect of Cobalt–Chromium–Molybdenum implant surface modifications on biofilm development of S. aureus and S. epidermidis

    Get PDF
    Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content
    • …
    corecore